Singular points of plane curves

Curves, Plane Singularities (Mathematics) e-böcker
Cambridge University Press
2004
EISBN 9780511265372
Preface; 1 Preliminaries; 2 Puiseux' Theorem; 3 Resolutions; 4 Contact of two branches; 5 Topology of the singularity link; 6 The Milnor fibration; 7 Projective curves and their duals; 8 Combinatorics on a resolution tree; 9 Decomposition of the link complement and the Milnor fibre; 10 The monodromy and the Seifert form; 11 Ideals and clusters; References; Index.
The study of singularities uses techniques from algebra, algebraic geometry, complex analysis and topology. This book introduces graduate students to this attractive area of mathematics. It is based on a MSc course taught by the author and also is an original synthesis, with new views and results not found elsewhere.
The study of singularities uses techniques from algebra, algebraic geometry, complex analysis and topology. This book introduces graduate students to this attractive area of mathematics. It is based on a MSc course taught by the author and also is an original synthesis, with new views and results not found elsewhere.
